C3Subtitles: 36c3: Der Deep Learning Hype
back

Der Deep Learning Hype

Wie lange kann es so weitergehen?

If you suspend your transcription on amara.org, please add a timestamp below to indicate how far you progressed! This will help others to resume your work!

Please do not press “publish” on amara.org to save your progress, use “save draft” instead. Only press “publish” when you're done with quality control.

Video duration
01:04:42
Language
German
Abstract
Deep Learning ist von einem Dead End zur ultimativen Lösung aller Machine Learning Probleme geworden - und einiger anderer auch. Aber wie gut ist dieser Trend wirklich? Und wie nachhaltig?

Wir setzen uns mit wissenschaftlicher Nachhaltigkeit, sozialen Auswirkungen, und den Folgen für unsere Ressourcen, unseren Energieverbrauch, und damit unseren Planeten auseinander.

Deep Learning ist von einem Dead End zur ultimativen Lösung aller Machine Learning Probleme geworden. Die Sinnhaftigkeit und die Qualität der Lösung scheinen dabei jedoch immer mehr vom Buzzword Bingo verschluckt zu werden.

Ist es sinnvoll, weiterhin auf alle Probleme Deep Learning zu werfen? Wie gut ist sind diese Ansätze wirklich? Was könnte alles passieren, wenn wir so weiter machen? Und können diese Ansätze uns helfen, nachhaltiger zu leben? Oder befeuern sie die Erwärmung des Planetens nur weiter?

Wir setzen uns im Detail mit drei Fragestellungen auseinander:

1. Wissenschaftliche Nachhaltigkeit: Wie gut sind die Ergebnisse wirklich? Was können die modernen neuronalen Netze und was können sie nicht? Und vor allem: Wo werden sie eingesetzt und wie sinnvoll ist das? KI Systeme, deren Beschreibung beeindruckend sind, produzieren nicht immer die besten Ergebnisse, und Reproduzierbarkeit, Evaluation, und Reflexion leiden unter Konkurrenzdruck und dem Publikationszyklus. Außerdem, welche Lösungen und Ansätze gehen im Deep Learning Hype unter? Dafür, dass sich so viele Forscher*innen mit dem Thema beschäftigen, zahlen wir damit, dass andere Themen, Ideen und Ansätze ignoriert werden - obwohl sie nützlich sein könnten.

2. Gesellschaftliche Auswirkungen: Was macht das mit unserer Gesellschaft? Insbesondere die Maschinen, die auf irgendeiner Ebene versuchen, Menschen zu imitieren, aber auch viele Anwendungen, die wir alltäglich verwenden, haben einen grundlegenden Einfluss auf uns, der nicht immer ausreichend reflektiert wird. Maschinen können auch diskriminieren, unsere Entscheidungen beeinflussen, uns in falscher Sicherheit wiegen und Aufgaben übernehmen, denen sie überhaupt nicht gewachsen sind.

3. Umwelteinfluss: Welche Ressourcen investieren wir? Rechenzentren, riesige Data Warehouses, Kryptocurrency-Berechnung und Compute Cluster haben einen nicht mehr vernachlässigbaren Einfluss auf unsere endlichen Ressourcen und den CO2-Haushalt, direkt und indirekt. Die Menge an Strom, Zeit, Platz und Material, die wir investieren, sind in den letzten Jahren massiv gewachsen. Wollen wir wirklich so weiter machen?

Talk ID
11006
Event:
36c3
Day
2
Room
Ada
Start
2:10 p.m.
Duration
01:00:00
Track
Resilience & Sustainability
Type of
lecture
Speaker
Nadja Geisler
Benjamin Hättasch
0.0% Checking done0.0%
0.0% Syncing done0.0%
70.5% Transcribing done70.5%
29.5% Nothing done yet29.5%

German: Transcribed until

Last revision: 6 days, 23 hours ago