If you suspend your transcription on amara.org, please add a timestamp below to indicate how far you progressed! This will help others to resume your work!
Please do not press “publish” on amara.org to save your progress, use “save draft” instead. Only press “publish” when you're done with quality control.
<p>In March 2014, researchers found a catastrophic vulnerability in OpenSSL, the cryptographic library used to secure connections in popular servers including Apache and Nginx. The bug allowed attackers to extract cryptographic keys, login credentials, and other private data from an estimated 22-55% of HTTPS sites. Worsening its severity, the bug was both simple to understand and exploit.</p>
<p>We used ZMap to perform comprehensive scans of the IPv4 address space and popular web servers in the days and months following disclosure. We provide more extensive estimates on who was originally vulnerable, track who patched their sites, and replaced certificates. We will present exactly which server products and devices were vulnerable. We will further discuss how Heartbleed affected the HTTPS CA ecosystem. Worryingly, we find that only 10% of the known vulnerable sites replaced their certificates within the next month, and of those that did, 14% neglected to change the private key, gaining no protection from certificate replacement! We'll also present the shortcomings in the public key infrastructure that Heartbleed unearthed and problems our community needs to focus on moving forward.</p>
<p>We investigated widespread attempts to exploit Heartbleed post disclosure at four network sites. We will discuss the subsequent exploit attempts we observed from almost 700 sources and the Internet-wide scans that started post disclosure. We also investigated whether exploit attempts took place prior to Heartbleed's public disclosure, including examining suspicious network traces recorded months earlier. We will disclose new details of these traces and their implications in the talk.</p>
<p>Even with global publicity, Heartbleed patching plateaued after two weeks. To try to help, we notified network administrators responsible for more than 500,000 unpatched systems. While much of the security community (including us!) assumed that mass vulnerability notifications would be too difficult or ineffective, we found that it increased the Heartbleed patching rate by nearly 50%. We will discuss how we performed these notifications, the reactions of network operators, and prospects for performing automatic mass notifications based on Internet-wide scanning in future vulnerability events.</p>
<p>Throughout the talk, we will use real world data to frame what went well and what went poorly in the Internet's response to Heartbleed. The vulnerability's severe risks, widespread impact, and costly global cleanup qualify it as a security disaster. However, by understanding what went wrong and learning from it, the Internet security community can be better prepared to address major security failures in the future.</p>